

Lesson 1.03 Domain and Range

Students will be able to:

- <u>Content Objective</u>: Determine the domain and range of functions using interval, inequality, and set builder notation.
- Language Objective: Write an explanation of how to find the range given the domain.

Warm Up

Given the function $f(x) = \frac{x^2 + 2x - 1}{5}$, determine the value of $f(1) \cdot f(-5)$.

Vocabulary Review

Matching: Match the word to its correct definition/example.

1. Domain	a.	$x \ge 1$
2. Range	b.	$\{x , x \in \mathbb{R}, -3 \le x < 4\}$
3. Set Builder Notation	C.	Set of all x-values (input) that result in an output
4. Inequality Notation	d.	Set of all y-values (outputs)
5. Interval Notation	e.	[3,∞)

Graphic Organizer

DigitLit

Skill 1: Using the 3 Notations

ń<u>/</u>

Algebra II Unit 1: Functions

a.	Indicate all values from 3 up to 8, including 3 and 8 and every decimal in between.	b.	Indicate all values from -4 up to 5, not including -4 and 5 but including the decimals in between.
Inte	erval Notation:	Int	erval Notation:
Ine	quality Notation:	Ine	quality Notation:
Set	-Builder Notation:	Set	-Builder Notation:
Ç a.	Exercise 1: Using the 3 Notations	b.	Indicate all values that are less than or equal
	including 2 but including 10 and every decimal in between.		to -6.
Inte	erval Notation:	Int	erval Notation:
Ine	quality Notation:	Ine	quality Notation:
Set	-Builder Notation:	Set	-Builder Notation:

Note: Some functions by their nature have values that are not allowed in the domain. Here is a summary of ones we will learn about today.

- You cannot divide by zero, therefore zero can never be the value of a fraction's denominator. •
- There are no real number values which are square roots of negatives. Therefore, radicands must • always be greater than or equal to zero in a square root.

Skill 2: Domain & Range

Determine the domain and range for each of the following in interval notation.

a. $f(x) = \sqrt{x-3}$	b.	$a(x) = 5\sqrt{-x+2}$
Domain:	Domain:	Domain:
Range:	Range:	Range:

3

Determine the domain and range for each of the following in interval notation.

a. $h(x) = \frac{1}{x}$ b. $p(x) = \frac{x+3}{x+2}$ c. $t(x) = \frac{x+4}{x^2}$

Exercise 3: Excluded Values

Determine the values that are excluded from the domain of the following rational functions.

a.
$$l(x) = \frac{5}{x}$$
 b. $r(x) = \frac{1}{x-9}$ c. $w(x) = \frac{6x+1}{x^2-16}$

Multiple Choice

 \circ

The function $a(x) = 2x^2 + 1$ maps the domain given by the set $\{-5, -4, -3, -2\}$. Which of the following sets represents the range of a(x)?

- a. {33, 19, 9, 3}
- b. {51, 33, 19, 9}
- c. {51, 33, 9}
- d. {1, 3, 9, 19}

Explain in words, how you determined your answer to the check point.

4

Name:

- 1. Given the function $f(x) = x^2 + 4x + 4$,
determine the range in interval notation.2. Which of the following would represent the
domain of the function $y = \sqrt{6 3x}$ a. $(0, \infty)$
b. $[0, \infty]$
c. $[0, \infty)$ a. x > 2
b. $x \ge 2$ <br/c. $x \le 2$
 - d. $(\infty, 0]$ d. x < 2
- 3. Determine any values of x that do not lie in the domain of the functions below. Justify your response.
 - a. $t(x) = \frac{x-11}{2x-3}$ b. $w(x) = \frac{2x-7}{4x+5}$
- 4. State the domain and range of the graphs below in **set builder notation**.

5. If the range of a(x) = 2x - 5 is $y = \{1,3\}$, what is the domain? Show your work.