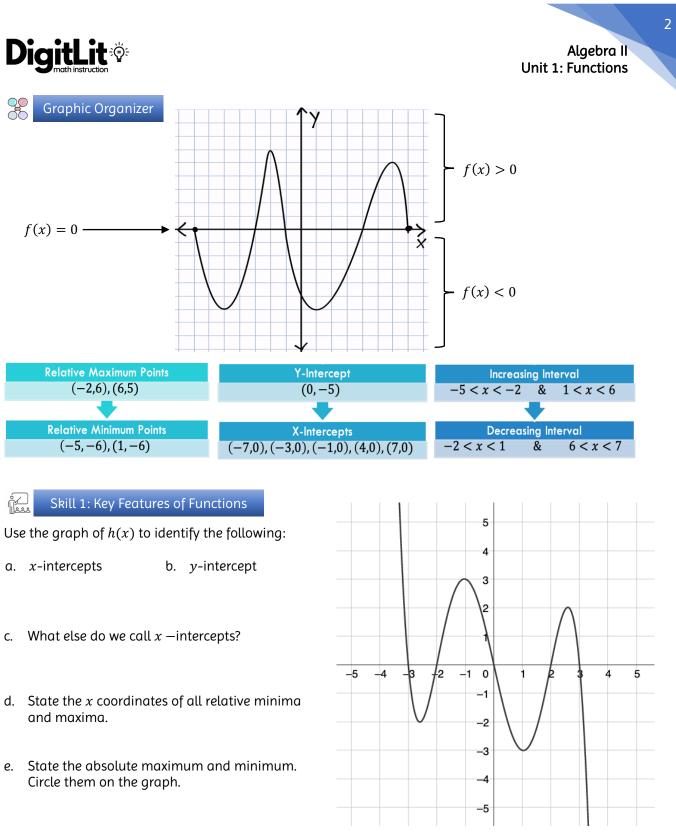


Lesson 1.05 Key Features of Functions

Students will be able to:

- Define and identify:
 - o x and y intercepts
 - o maxima and minima
 - o domain and range
 - intervals where functions are increasing, decreasing, positive, and negative.
- <u>Language Objective</u>: Explain to a partner how to identify key features of functions from a table.

Warm Up


If the graph of the equation y = 4x - 3 is reflected in the line y = x, the equation of the image is

(1)
$$y = x + \frac{3}{4}$$
 (2) $y = \frac{x+3}{4}$ (3) $y = \frac{x}{4} + 3$ $y = -4x + 3$

Vocabulary Review

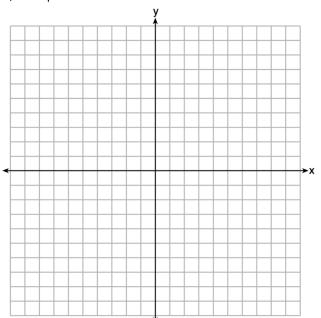
Match each term below with its correct definition.

1.	Domain	a.	As x increases, y decreases.
2.	Range	b.	Where a function crosses the y-axis, always at $x = 0$.
3.	Increasing Interval	C.	The set of inputs, <i>x</i> values, defined by a function.
4.	Decreasing Interval	d.	The set of outputs, <i>y</i> values, defined by a function.
5.	Y-Intercept	e.	Where a function crosses the x-axis, also called zeros and always at $y = 0$.
6.	x-Intercept(s)	f.	As x increases, y increases.
7.	$\underline{\qquad} f(x) > 0$	g.	Where $f(x)$ is negative (below the x-axis)
8.	$\underline{\qquad} f(x) < 0$	h.	Where $f(x)$ is positive (above the x-axis)

f. Is h(x) increasing or decreasing over the interval 0 < x < 1?

g. Interval where h(x) > 0:

h. Interval where h(x) < 0:


3

Q Exercise 2: Key Features of Functions

Graph the function f(x) = -|x + 3| + 4 on the set of axes provided.

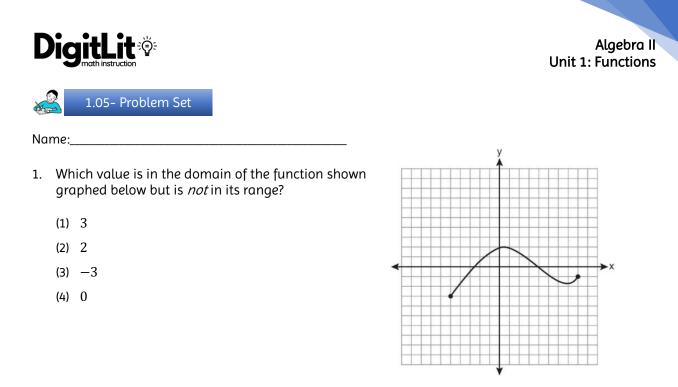
Hint: To get absolute value bars on the graphing calculator press: MATH→ NUM: (1)abs(

- a. What does the point (-3,4) represent?
- b. State the zeros of f(x).
- c. State a domain interval for which f(x) is increasing.

- d. State a domain interval for which f(x) > 0
- e. Evaluate f(0). What key feature does this represent in terms of the graph?

Talk it Out

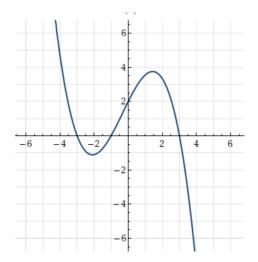
The function g(x) can be represented by the table below with selected values over the domain $-5 \le x \le 8$. The function has two zeros and two turning points, one at (-3,0) and (2,150).


x	-5	-3	-2	-1	2	5	6	8
g(x)	80	0	14	48	150	0	-162	-400

a. State the interval where g(x) < 0.

b. State an interval over which g(x) is increasing.

If
$$f(x) = \frac{1}{2}x + 8$$
 and $g(x) = \sqrt{(f(x+2))}$, then what is the *y*-intercept of *g*?



- 2. Given that f(x) = 3x + 1, find the *y*-intercept of g(x) if $g(x) = 2[f(x)]^2 3$.
- 3. If $f(x) = \frac{3}{2}x + 6$, find the *x*-intercept of $f^{-1}(x)$.

4. Jared was asked to state a domain for which f(x) is increasing. He wrote the following:

$$-2 \le x \le 1.5$$

Is Jared Correct? Explain.

