

1

Lesson 1.06 Function Transformations

Students will be able to:

<u>Content Objective</u>: Describe and graph the transformation made by a function from its parent function.

h(x) = x - 4

Language Objective: Explain how a transformation would change the vertex of a function.

Warm Up Part I- Graph the following on the axes provided. f(x) = xg(x) = x + 4What do you notice from the original graph of f(x)?

Vocabulary Review

Matching: Use the word bank to identify each function. Then, write the equation of the parent function.

Skill 1: Vertical/Horizontal Translation

Consider the following absolute value functions:

$$f(x) = |x|$$
 $g(x) = |x-2| + 1$ $h(x) = |x+4| - 3$

a. The parent function f(x) is already graphed for you. Graph both g(x) and h(x) on the same axes and create a table of values below.

- a. Describe the transformation that occurred from the parent function to g(x) = |x 2| + 1 and state the vertex.
- b. Describe the transformation that occurred from the parent function to h(x) = |x + 4| 3 and state the vertex.
- c. What is the rule for a **vertical** shift?
- d. What is the rule for horizontal shift?

3

Skill 2: Reflections

Consider the following quadratic functions: $f(x) = (x + 4)^2$

- a. The function f(x) is already graphed for you. Graph both g(x) and h(x) on the same axes.
- b. What is the rule for a **reflection over the x-axis?**

c. What is the rule for a reflection over the y-axis?

Skill 3: Dilations

1. Consider the exponential functions:

$$v(x) = 2^x$$
 $w(x) = 3(2)^x$ $n(x) = \frac{1}{2}(2)^x$

a. Use your calculator to roughly sketch each function below.

 $v(x) = 2^x$ $w(x) = 2^{3x}$ $n(x) = 2^{.5x}$

a. Use your calculator to roughly sketch each function below.

Graphic Organizer

Transformations of Functions: $f(x)$				
Vertical	Up	f(x) + k shifts $f(x)$ up k units.		
	Down	f(x) - k shifts $f(x)$ down k units.		
Horizontal	Right	f(x-h) shifts $f(x)$ right h units.		
Honzontat	Left	f(x+h) shifts $f(x)$ left h units.		
Deflection	x-axis	-f(x) reflects $f(x)$ over the x-axis.		
Reflection	y-axis	f(-x) reflects $f(x)$ over the y-axis.		
Vortical	Stretch	$a \cdot f(x)$, where $a > 1$, stretches $f(x)$ vertically by a factor of a .		
verticat	Shrink	$a \cdot f(x)$, where $0 < a < 1$, shrinks $f(x)$ vertically by a factor of a .		
Horizontal	Stretch	f(bx), where $0 < b < 1$, stretches $f(x)$ horizontally , multiply y-values by b		
	Shrink	f(bx), where $b > 1$, shrinks $f(x)$ horizontally , divide x-values by b		

Given the function f(x) = |x| with the vertex at the origin (0,0), determine where the vertex of the function h(x) = -|x - 1| + 4 would lie? Explain your thinking.

- 1. A function f(x) has a domain of $-3 \le x \le 9$ and the range is $2 \le y \le 15$. What would the domain and range be after a transformation of f(x-2) - 8?
- 2. Multiple Choice The point (5,8) lies on the parent function's graph f(x). Which point would lie on the graph of the function after a transformation of f(x + 4) + 2
 - a. (9,10)
 - b. (1,2)
 - c. (1,10)
 - d. (8,5)

5

Name:__

- 1. Given the graph of f(x) shown below, complete the following.
 - a. Graph f(x) 5. Label this g(x).
 - b. Graph f(x + 4). Label this h(x).
 - c. Describe the transformation done to f(x) represented by 2f(x) in words.
 - d. Describe the transformation done to f(x) represented by $f(\frac{1}{2}x)$ in words.
- 2. Given the function $y = 5^x$, write a function for y after each of the following transformations. The first one has been done for you.

a. Shift left 2 and up 4.	b. Shift right 1 and down 7.	c. Vertical Stretch by a factor of 3.	d. Vertical shrink by a factor of $\frac{2}{3}$.
$y = 5^{x+2} + 4$			

- 3. Given the function $f(x) = x^2$ describe the transformation that occurred to each function below.
 - a. $f(x) = -(x+2)^2 6$ b. $f(x) = (-x-3)^2 + 4$

c.
$$f(x) = 2(-x)^2 + 4$$

d. $f(x) = \frac{1}{3}(x+5)^2$