

Lesson 2.01 Laws of Exponents

Students will be able to:

- <u>Content Objective:</u> Use the properties of exponents to evaluate expressions containing exponents.
- Language Objective: Write an explanation as to why certain types of exponential equations have no solution.

Simplify the following expressions containing exponents.

a. $3y \cdot 4y^2$

b. $\frac{8a^{10}}{4a^6}$

c. $(2x^3)^2$

Vocabulary Review

Skill 2: Powers to Powers

Fully simplify the following expressions. Your answer should only contain positive exponents.

a.
$$(-5x^3y^4z^2)^3$$
 b. $(2ef^{-2})^{-2} \cdot (3e^4f^5)^0$ c. $\left(\frac{2f^{-2}g^0}{g^5}\right)^{-2}$

Exercise 2: Powers to Powers

Fully simplify the following expressions. Your answer should only contain positive exponents.

a. $(6p^2q^3r)^2$ b. $(-3x^4y^5)^{-3} \cdot 4x^4$ c. $\left(\frac{2xy^3}{3z^2}\right)^3$

Exponential functions are functions containing a variable exponent. When evaluating an exponential function of the form $y = a(b)^x$, the rules of exponents still apply.

- 1. Evaluate the function $f(x) = 4(2)^x$ at the values below without the use of a calculator.
- a. f(2) b. f(0) c. f(-2)

d. Which of the following values above represents the **y-intercept** of the exponential function? How do you know?

Fully simplify the following expressions. Your answer should only contain positive exponents.

$$\frac{6a^2b^3}{(-4a^4b)(-3a^3b^2)}$$

Name:

Part I-Fully simplify the following expressions. Your answer should only contain positive exponents.

1.
$$\frac{2x^3y^4 \cdot 3y^{-2}}{4x^0y^3}$$
 2. $\frac{(2a^3b^4)^4}{ba^3}$

3.
$$(3k^7m)^{-2}(2m)^0$$

4. $\frac{2u^4v^4}{(2u^2v^{-1})^{-4}}$

Part II- Evaluate the function $f(x) = \frac{1}{2}(4)^x$ at the values below. DO NOT use a calculator.

a.
$$f(3)$$
 b. $f(0)$ c. $f(-2)$

d.
$$f(-1)$$
 e. $f(-3)$ f. $f(1)$

g. A student wants to solve the equation $0 = \frac{1}{2}(4)^x$. Is there a solution to this equation? Explain.