

Lesson 2.02 Rational Exponents

Students will be able to:

- <u>Content Objective:</u> Evaluate an expression in an equivalent form using rational exponents.
- <u>Language Objective:</u> Explain the steps for rewriting rational exponents as roots.

Warm Up

Simplify each of the following using laws of exponents.

a. $(-2a^2b^3)^{-2} \cdot 8a^3$ b. $\left(\frac{10x^{-4}y^5}{5y^2}\right)^2$

Vocabulary Review

Matching- Match each of the following rules of exponents its corresponding example.

1.	Power to a Power	a.	$\left(\frac{x}{y}\right)^b$
2.	Quotient Rule	b.	$(xy)^b$
3.	Extended Power Rule (Division)	C.	$z^x \cdot z^y$
4.	Product Rule	d.	$(x^a)^b$
5.	Extended Power Rule (Multiplication)	e.	$\frac{z^x}{z^y}$

Graphic Organizer

Algebra II Unit 2: Exponents & Exponential Functions

- 1. Evaluate each of the following using a calculator.
 - a. $25^{\frac{1}{2}} =$ b. $64^{\frac{1}{2}} =$ c. $343^{\frac{1}{3}} =$
- 2. What do you notice? What can we say about the denominator of fractional exponents?

d. Solve the equation $9 + 5\sqrt[3]{2x} = 29$ for x using your knowledge of rational exponents and roots.

Exercise 2: Exponential Form

Rewrite in exponential form, then simplify completely.

a. $\sqrt{49}$

c.
$$\sqrt{x^5}$$

d. Solve the equation $7 = y^{\frac{1}{2}}$ for y using your knowledge of rational exponents and roots.

Write It Out Explain how $\left(2^{\frac{1}{5}}\right)^3$ can be written as the equivalent radical expression $\sqrt[5]{8}$.

expression $(2a)^{\frac{3}{b}}$ is equivalent to

When a > 0 and b is a positive integer, the

(1) $3^{1.5}x^2y^{0.2}$

(2) $3^{\frac{3}{2}}x^2y^{\frac{5}{6}}$

(3) $81x^{\frac{5}{6}}y^5$

(4) $3^{\frac{4}{3}}xy$

Given y > 0, the expression $\sqrt{3x^2y} \cdot \sqrt[3]{27x^3y}$ is equivalent to

(1) $\frac{1}{(\sqrt[b]{2a})^3}$ (2) $(\sqrt[3]{2a})^b$

(3)
$$\frac{1}{\sqrt[3]{2a^b}}$$

(4)
$$(\sqrt[b]{2a})^3$$

8					
	C	hoc	hI	Dai	nt
		nec	κı		ΠL

Multiple Choice

For all positive values of x, which expression is equivalent to $x^{\frac{3}{5}}$?

- (1) $\sqrt[3]{x^5}$ (2) $(x^3)^5$
- (3) $\sqrt[5]{x^3}$ (4) $3(x^5)$

2.02- Problem Set

Name: _____

- 1. Multiple Choice2. Multiple ChoiceWhich of the following represents $10^{\frac{8}{5}}$ in
radical form?2. Multiple Choicea. $(\sqrt[5]{10})^8$ b. $(\sqrt{10})^5$ Which of the following represents $(5x)^{\frac{5}{2}}$ in
radical form?c. $(\sqrt{10})^8$ b. $(\sqrt[10]{10})^5$ a. $(\sqrt{5x})^2$ b. $(\sqrt{5x})^2$ b. $(\sqrt{5x})^2$
- 3. Rewrite each of the following as roots instead of fractional exponents. Then evaluate the expression.
 - a. $5^{\frac{5}{4}}$ b. $2^{\frac{4}{5}}$ c. $(10x)^{\frac{3}{5}}$

- 4. Rewrite in exponential form, then simplify completely.
 - a. $\sqrt{5}$ b. $\sqrt[3]{7^5}$ c. $(\sqrt[3]{6k})^2$