

Unit 2: Transformations Geometry

Lesson 2.02 Rotations

Students will be able to:

- <u>Content Objective</u>: Define rotation more closely and construct rotations using a protractor.
- Language Objective: Discover that the image of a segment rotated 180° about a point will be parallel to the pre-image.

Warm Up

In the diagram below, line *n* is parallel to line *o*. Figure B is the image of Figure A after a reflection over line o. Figure C is the image of Figure B after a reflection over line n. Which single transformation would carry Figure A onto Figure C?

- Dilation 1)
- 2) Reflection
- Translation 3)
- 4) Rotation

Identify whether each of the following represents a **clockwise** rotation or **counterclockwise** rotation.

	Graphic Organizer
--	-------------------

A transformation that				
Center of Rotation	Angle of Rotation	Notation		
A fixed point in which	The degree (angle)	We use a capital <i>R</i> to denote a		
a figure is rotated	through which the pre-	rotation.		Im
about.	image is rotated to	<i>R_{C,-90°}</i>		
	produce the image.	Clockwise rotation: negative	Pre-image	
Center of rotation: C	Rotation: 90° clockwise	Counterclockwise rotation: positive		

Skill 1: Rotation Notation

Identify the angle of rotation and the direction based on the rotation notations shown below.

a.	<i>R</i> _{270°}	b.	<i>R</i> _{-30°}	c.	R_{45°
----	--------------------------	----	--------------------------	----	----------------

Exercise 1: Rotation Notation

Identify the angle of rotation and the direction based on the rotation notations shown below.

b. R_{90°}

a. R_{-180°}

Constructing Center of Rotation Measuring Angle of Rotation **Step 1:** Connect two pairs of corresponding vertices Step 1: Identify the <u>center of rotation</u> point. using line segments. **Step 2:** Measure the angle formed by connecting Step 2: Construct the perpendicular bisector of each corresponding vertices to the center point of segment. rotation. **Step 3:** Mark the point where the perpendicular **Step 3:** Check your answer by completing steps 1 bisectors intersect. This is the center of rotation! and 2 with other corresponding vertices.

<u>ن</u>ی Skill 2: Center and Degree of Rotation

Figure *A* is rotated to produce figure A'. Construct the center of rotation, the degree of rotation, and direction.

Exercise 2: Center and Degree of Rotation Q

C. *R*_{135°}

Figure *B* is rotated to produce Figure B'. Construct the center of rotation, the degree of rotation, and direction.

B'

A'

3

Ζ

Skill 3: Constructing Rotations

Line segment *AB* shown below has a length of 1.5 inches.

a. Draw its image, $\overline{A'B'}$, after a rotation of 45° counterclockwise about point *O*.

b. Do rotations preserve length? Measure $\overline{A'B'}$ to support your answer.

 $R_{0,90^{\circ}}(X) \rightarrow X'$ $R_{0,90^{\circ}}(Y) \rightarrow Y'$ $R_{0,90^{\circ}}(Z) \rightarrow Z'$

Exercise 3: Constructing Rotations

a. Using a compass and straightedge construct

 $\angle X'Y'Z'$ given the rotation notation shown

 $\angle XYZ$ is shown below with point O.

 \bigcirc

below.

b. Do rotations preserve angle measure? Measure $\angle X'Y'Z'$ to support your answer.

Α

• C

•0

 \overline{AB} was rotated about point *C* counterclockwise by 180° to get $\overline{A'B'}$.

- a. Are \overline{AB} and $\overline{A'B'}$ congruent? Explain.
- b. Construct $\overline{A'B}$. What is true about $\angle ABA'$ and $\angle B'A'B$? What type of angles are these called?
- c. What is true about \overline{AB} and $\overline{A'B'}$?

Fill in the blanks using your knowledge of rotations.

The notation $R_{K,-270^{\circ}}(\Delta ABC)$ says to rotate ΔABC ______ degrees in the ______ direction about point ____.

Name:

- 1. Identify the angle of rotation and the direction based on the rotation notations shown below.
- a. $R_{180^{\circ}}$ b. $R_{-90^{\circ}}$ c. $R_{270^{\circ}}$
- 2. Figure G is rotated to produce figure G'. Construct the center of rotation, the degree of rotation, and direction.

3. Line segment *AB* shown below. Draw its image, $\overline{A'B'}$, after a rotation of 90° counterclockwise about point *O*. Use a compass and straightedge.

- 4. The Ain Dubai located on Blue Waters Island is the tallest Ferris wheel in the world, standing over 250 meters tall. With 48 cabins, this attraction can hold a maximum of 1750 people and takes 38 minutes to make a full rotation.
 - a. Based on the information above, how many minutes does it take one cabin to rotate 180°.
 - b. How many minutes does it take one cabin to rotate 60°? Round to the nearest tenth of a minute.

Ain Dubai. (3AD). photograph, Dubai.