

Lesson 2.03 Equations with Exponents

Students will be able to:

- <u>Content Objective:</u> Solve equations containing rational exponents.
- <u>Language Objective</u>: Discuss how to manipulate a radical expression to find an unknown value.

What exponent can we raise x^3 to get an outcome of x^1 ?

Vocabulary Review

<u>Reciprocal</u>: a mathematical expression/function related to another such that their product is

Example: $\frac{2}{3} \cdot \frac{3}{2} = 1$ $5 \cdot \frac{1}{5} = 1$

Steps for Solving Equations Using the Reciprocal Method

- 1. Use inverse operations to isolate the base.
- 2. Raise the exponential expression to the reciprocal of the exponent shown. Do this on both sides.
- 3. Write your final answer.

Skill 1: Solving One-Step Equations Using Reciprocals

Solve each of the following equations below for the given variable.

a.
$$x^7 = 128$$
 b. $a^{\frac{1}{2}} = 16$

Q

ήζ.

Q

Exercise 1: Solving One-Step Equations Using Reciprocals

Solve each of the following equations below for the given variable. Round to the nearest tenth if necessary.

a.
$$x^{\frac{2}{3}} = 4$$
 b. $y^5 = 200$

Skill 2: Solving Multi-Step Equations Using Reciprocals

Solve the equation below for *x*.

$$5\left(x^{\frac{1}{2}}\right)^3 + 7 = 142$$

Exercise 2: Solving Multi-Step Equations Using Reciprocals

1. Solve the equation below for r.

$$-5 - 5r^{\frac{3}{2}} = -3650$$

2. Solve the equation below for w. Round to the *nearest tenth*.

$$w^{\frac{4}{3}} + 30 = 130$$

3. Solve the equation below for x.

$$3x^{\frac{3}{4}} + 5 = 86$$

🔊 Talk it Out

Given the equal terms $\sqrt[3]{x^5}$ and $y^{\frac{5}{6}}$, determine and state y in terms of x. Discuss with a partner.

Which of the following is the solution to the equation $x^{\frac{1}{4}} = 16$?

(1) 4	(2) 2	(3) 65,536	(4) 8

Name:

1. The expression $(x + 5)^{\frac{a}{2}}$ is equivalent to

(1)
$$(\sqrt{x+5})^a$$
 (3) $(\sqrt[a]{x+5})^2$

(2)
$$\frac{1}{(\sqrt{x+5})^a}$$
 (4) $\frac{1}{(\sqrt[a]{x+5})^2}$

2. Solve algebraically for *g*. Round to the *nearest tenth* if necessary.

$$g^5 + 3 = 16,810$$

3. Solve the equation below algebraically for *x*. Round to the *nearest tenth* if necessary.

$$3x^2 - 15 = 30$$

4. Justify why $4^{\frac{3}{2}} = 8$. Show all work.