

Lesson 2.05 Translations

Students will be able to:

- <u>Content Objective</u>: Define a translation in terms of distance and vectors and represent a translation as a geometric function that takes points in the plane as input and gives points as outputs.
- Language Objective: Explain how translations preserve congruency.

Circle all transformations below that are **rigid motions**.

Describe, in words, the translation given by the notation shown below. Be sure to include the pre-image and image if necessary.

a.
$$(x, y) \rightarrow (x + 2, y - 8)$$

b. $T_{-1,0}(\overrightarrow{FG}) = (\overrightarrow{F'G'})$

Describe, in words, the translation given by the notation shown below. Be sure to include the pre-image and image if necessary.

a. $T_{3-7}(\Delta XYZ) = (\Delta X'Y'Z')$ b. $(x, y) \to (x - 6, y + 9)$

Given \overline{AB} and vector \overline{EF} below, use a compass and protractor to translate \overline{AB} a distance of 1 inch in the direction of \overline{EF} . Label the image $\overline{A'B'}$.

a. Is \overline{AB} the same length as $\overline{A'B'}$? Use measurement to justify your answer.

Use your <u>protractor</u> to locate the <u>direction</u>. Use the <u>compass</u> to measure the

distance.

b. Construct $\overline{AA'}$ and $\overline{BB'}$. What can we conclude about these two segments?

- c. Are \overline{AB} and $\overline{A'B'}$ parallel? Explain.
- d. Finish the sentence below.

Translations will always map lines to

_____lines.

Given $\triangle ABC$ shown on the coordinate plane below with vertices A(1,2), B(5,6), and C(8,0).

a. Find and plot its image after a translation of 9 units left and 8 units down. Label the image *A'B'C'* and fill in the table below.

Input	$(x,y) \rightarrow (x-9,y-8)$	Output
A (1,2)		
B (5,6)		
C(8,0)		

- b. Are $\triangle ABC$ and $\triangle A'B'C'$ congruent? Explain.
- c. Finish the sentence below.

Translations will always preserve ______ measure and _____, therefore translations are rigid motions.

Investigate

Shown below are \overline{AB} and \overline{BC} .

- a. Using the graph, translate \overline{AB} down 6 units and to the left 1 unit. Label the image of point *A*, *D*. What point does point *B* get mapped to?
- b. Translate \overline{BC} 4 units to the left. What points do B and C get mapped to? Fill in the blanks below.

- c. What is true about \overline{AB} and \overline{DC} ? What is true about \overline{AD} and \overline{BC} ? Explain.
- d. What shape is quadrilateral *ABCC*'?

e. What sequence of transformations would have mapped $\angle ABC$ to $\angle ADC$? There is more than one correct answer.

What is the image of the point (-3,1) under the translation $T_{-4,5}$?

2.03- Problem Set

Name:

- 1. What is the image of the point (6,11) under the translation $T_{4,-1}$?
 - 1) (2,12)
 - 2) (5,15)
 - 3) (2,12)
 - 4) (10,10)
- 2. When the transformation $T_{1,-2}$ is performed on point *A*, its image is point A'(-4,3). What are the coordinates of *A*?
 - 1) (-5,5)
 - 2) (-3,1)
 - 3) (5, -5)
 - 4) (3, -1)
- 3. Garret is constructing a design using two triangles $\triangle ABC$ and $\triangle A'B'C'$ where $\triangle A'B'C'$ is the image of $\triangle ABC$ after a translation. Use the table of translations is below to find the coordinated of points *C* and *B'*.

$\triangle ABC$	$\Delta A'B'C'$	
A(1,3)	A′(4,−2)	
B(-2, -4)	B'	
С	C'(6, -3)	

- 4. Shown graphed below is $\triangle ABC$.
 - a. Rotate ΔABC 180° counterclockwise about point *C* and label the image $\Delta A'B'C'$. This transformation can be represented using the notation $R_{C,180^\circ}(\Delta ABC)$
 - b. Translate $\Delta A'B'C'$ 7 units to the left and 4 units up. Label the image of point A' point A''.
 - c. What shape is Quadrilateral *ABA*"*C*?

