

Lesson 2.06 Compound Interest

Students will be able to:

- <u>Content Objective</u>: Define & evaluate exponential equations that represent compound interest.
- Language Objective: Write compound interest formulas to represent real world situations.

Warm Up

The expression $(a\sqrt{4b^4})(\sqrt{3ab^2})$ is equivalent to

- (1) $2a^{\frac{3}{2}}b^{3}\sqrt{3}$
- (2) $a^{\frac{1}{2}}b^{\frac{2}{\sqrt{3}}}$
- (3) 2*ab*²
- (4) $12a^2b^3\sqrt{3}$

Compound Interest: Where interest is calculated on the amount borrowed plus previous interest. Usually calculated one or more times per year.

Compound Interest Formula $A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$					
A	Р	r	n	t	

Vocabulary Review

a.	Compounded Daily	n =

- b. Compounded Monthly n =
- c. Compounded Quarterly n =
- d. Compounded Semi-annually n =
- e. Compounded Annually n =

Write out the equation for each and determine the amount of the investment with the parameters below. Round to the nearest cent.

Principal: **\$3000** Rate: **2**% Compounded: **Quarterly** Time: **4 years** Principal: \$1800 Rate: 4.2% Compounded: Semi-annually Time: 5 years

A bank offers 4% interest on saving accounts. Assuming you open a savings account with an initial deposit of \$2000, about how long will it take for your account to grow to \$3500 if it is compounded:

Yearly:

Quarterly:

If you open an account with \$36,500 at 7.25% interest per year, how much will be in the account after 12 years if the account was compounded:

Monthly:

Semi-Annually:

Sophie decides to put \$200 in a savings account. The account pays 2% annual interest, compounded monthly. Which of the following Equations represents the amount of money, *S*, Sophie will have after one year if she makes no deposits or withdrawals?

- (1) $S = 200(1.02)^{12}$
- (2) $S = \frac{200 200(1.02)^{12}}{1 1.02}$
- (3) $S = 200(1.002)^{12}$
- (4) $S = 200(0.98)^{12}$

2.06- Problem Set

Name: _

1. If an investment's value can be modeled with

 $A = 600 \left(1 + \frac{.045}{4}\right)^{4t}$ then which of the following describes the investment?

- (1) The investment has a nominal rate of 45% compounded every 4 years.
- (2) The investment has a nominal rate of 4.5% compounded every 4 years.
- (3) The investment has a nominal rate of 45% compounded quarterly.
- (4) The investment has a nominal rate of 4.5% compounded quarterly.

 How much money will you have in an account if you invest \$650 and you receive 4.05% compounded monthly for 10 years?

3.	Fill	in	the	table	below:
J.	1 1 1 1 1		unc	laole	00000

Compounding period (n)	Principal (P)	Interest rate (r)	Years (t)	Show work here	Final Amount (A)
Annually	\$1,000	2.5%	5 years		
Semi-Annually	\$1,000	2.5%	5 years		
Monthly	\$1,000	2.5%	5 years		

What do you notice based on the table above?