

Lesson 3.01 Introduction to Logarithms

Students will be able to:

- <u>Content Objective</u>: Explore the relationship between exponential and logarithmic form and evaluate logarithms.
- Language Objective: Explain how to find the average rate of change using logarithms.

Warm Up

Solve the exponential equation below for the value of x. Hint: Re-write the equation so that both sides have a common base.

The function $f(x) = 3^x$ is shown graphed on the axes below along with its table of values.

x	-2	-1	0	1	2
f(x)	$\frac{1}{9}$	$\frac{1}{3}$	1	3	9

a. Is this function one-to-one? What does this tell us about the inverse of this function?

b. Fill in the table of values below for $f^{-1}(x)$. Graph the inverse.

x			
$f^{-1}(x)$			

c. Find the equation for $f^{-1}(x)$. What do you notice?

A logarithmic function is the **inverse** of an exponential function

$$y = b^x \iff y = log_b x$$

where b is a positive # greater than 1

Exercise 3: Evaluate Logarithms

O

Evaluate each of the following logarithm using exponential form.

b. log₁₆32 c. log_5 a. $\log_3\left(\frac{1}{a}\right)$

<u>ک</u> Skill 4: Common Logarithm

Calculate each of the following logarithms.

The Common Logarithm	а.	log 100	b.	log 10	C.	log (0.01)
A logarithm with						
This is a "default"						
and the 10 is never written,						
kind of like						
square roots!						

Calculate each of the following logarithms.

a. log 100,000

b. log (0.0001)

c. $\log\left(\frac{1}{10}\right)$

Lisa purchased a new car in May of 2010. The value of her car, V, decreases after t years since 2010 and can be modeled by the function $\log_{0.7} \frac{V}{22000} = t$. What is the average decreasing rate of change per year of the value of the car from May 2011 to May 2013, to the nearest ten dollars per year?

Multiple Choice: If $f(x) = b^x$ where b > 1, then the inverse of the function is

(1)
$$f^{-1}(x) = \log_x b$$

(2)
$$f^{-1}(x) = b \log x$$

- (3) $f^{-1}(x) = \log_b x$
- (4) $f^{-1}(x) = x \log b$

- Name: _____
- 1. Write the following in exponential form.
- 2. Write the following in logarithmic form.
- $a. \quad \log_4\left(\frac{1}{64}\right) = -3$

a. $2^{-5} = \frac{1}{32}$

- b. $\log_5\left(\frac{1}{25}\right) = -2$ b. $10^3 = 1000$
- 3. Evaluate each of the following:
- a. $\log_3(\frac{1}{9})$ b. $\log_2(\frac{1}{64})$
- c. $\log_3 27$ d. $\log_{16} 4096$
- e. $\log_{625}125$ f. $\log_{512}16$

Multiple Choice

4. The value of $\log_m m^{2n}$ is.5. Which of the following is the value of
 $\log_2 \sqrt[3]{64}$?(1) n(2) mn(1) 2(2) 8(3) n^2 (4) 2n(3) 3(4) 16