

Lesson 3.02 Graphs of Logarithms

Students will be able to:

- <u>Content Objective</u>: Graph logarithms.
- Language Objective: Discuss the relationship between transformations and logarithmic graphs.

The expression $\log_4\left(\frac{1}{16}\right)$ is equivalent to

- (1) $\frac{1}{2}$ (2) 2
- . . 1
- (3) $-\frac{1}{2}$
- (4) -2
 - Vocabulary Review

Identify whether the following statements are true or false. Fix the false statements to make them true.

- 1. _____ Exponential and logarithmic equations are inverses of each other that have the same base.
- 2. _____ The correct logarithmic form of $2^4 = 16$ is $\log_4 16 = 2$.
- 3. _____ To graph the exponential form of a logarithm, reflect the graph over the line y = x.
- 4. _____ The correct exponential form of $\log_3 9 = 2$ is $3^2 = 9$.
- 5. _____ When given log 100, it is known that the base is 100.

<u>Asymptote:</u> A line that a function approaches but never crosses. For example, we have seen that exponential functions have an asymptote.

Skill 1: Graphing Logarithms <u>ک</u>م

a. Construct a table of values for $f(x) = 2^x$ and $g(x) = \log_2 x$, then graph both functions on the axes below.

$f(x)=2^x$	
-2	
-1	
0	
1	
2	
3	

- b. Show *algebraically* that the c. Find the domain and range inverse of $y = 2^x$ is $y = log_2 x$.
 - of $y = 2^x$ in interval notation and state the asymptote.
- d. Find the domain and range of $y = log_2 x$ in interval notation and state the asymptote.

Consider the logarithmic function below.

$$f(x) = \log_3(4 - x)$$

- a. Graph f(x) on the axes provided.
- b. State the domain of *f* interval notation.

c. State the equation of the asymptote.

Skill 2: Properties of Logarithmic Graphs

Which statement below about the graph of $f(x) = -\log(x + 2) - 3$ is true?

- (1) f(x) has a y-intercept at (0, -3)
- (2) -f(x) has a y-intercept at (0, -3)
- (3) As $x \to \infty$, $f(x) \to \infty$
- (4) As $x \rightarrow -2, f(x) \rightarrow -\infty$

Exercise 2: Properties of Logarithmic Graphs

If $f(x) = \log_4 x$ and g(x) is the image of f(x) after a translation eight units to the left, which equation represents g(x)?

- (1) $g(x) = \log_4(x+8)$ (3) $g(x) = \log_4(x-8)$
- (2) $g(x) = \log_4 x + 8$ (4) $g(x) = \log_4 x 8$

Check Point

Which sketch could represent the function $f(x) = -\log_{100}(x-3)$?

Name: _____

1. Graph $f(x) = \log_2(x + 4)$ on the set of axes below.

2. Graph the function $y = \log_2(x - 4) + 1$ on the grid below.

Describe the transformation that maps $y = \log_2 x$ to $y = \log_2(x - 4) + 1$